US009274755B2

a2 United States Patent

Szocs

US 9,274,755 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54) INFRASTRUCTURE FOR GENERATING
CODE USING ANNOTATION AND TEMPLATE

GENERATORS
(75) Inventor: Vojtech Szocs, Bratislava (SK)
(73) Assignee: Red Hat Israel, Ltd., Raanana (IL)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 563 days.
(21) Appl. No.: 13/604,132
(22) Filed: Sep. 5,2012
(65) Prior Publication Data
US 2014/0068552 Al Mar. 6, 2014
(51) Imt.ClL
GO6F 9/44 (2006.01)
GO6F 9/45 (2006.01)
GO6F 9/445 (2006.01)
(52) US.CL

CPC .. GOG6F 8/30 (2013.01); GO6F 8/40 (2013.01);
GO6F 8/41 (2013.01); GOGF 8/423 (2013.01);
GO6F 9/44526 (2013.01); GO6F 8/36 (2013.01)

400

T~

A

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,654,953 B1* 11/2003 Beaumont et al. 717/158
* cited by examiner

Primary Examiner — Jason Mitchell
Assistant Examiner — Mark Gooray
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

A method for generating boilerplate code is provided. The
method may include scanning an initial source code file for an
annotation identifying metadata of an element, scanning a
generator module for instructions for processing the metadata
of the element, and scanning the generator module for a
template module that includes an indication of a location for
inserting the processed metadata of the element in an output
file. The method may further include processing the metadata
of the element of the generator module according to the
instructions, and inserting the processed metadata of the ele-
ment at the indicated location in the output file.

20 Claims, 9 Drawing Sheets

START)

402

AN ANNOTATION ENGINE OF A CODE GENERATION MODULE
SCANS ONE OR MORE INITIAL SOURCE CODE FILES FOR AN
ANNOTATION IDENTIFYING METADATA OF AN ELEMENT.

Y

404

THE ANNOTATION PROCESSOR SCANS A GENERATOR FOR
INSTRUCTIONS FOR PROCESSING THE METADATA OF THE
ELEMENT.

Y

- 406

A TEMPLATE ENGINE OF THE CODE GENERATION MODULE
SCANS THE GENERATOR FOR A TEMPLATE MODULE THAT
INCLUDES AN INDICATION OF A LOCATION FOR INSERTING
THE PROCESSED METADATA OF THE ELEMENT IN AN OUTPUT
FILE.

\

408

THE TEMPLATE ENGINE PROCESSES THE METADATA OF THE
ELEMENT OF THE GENERATOR ACCORDING TO THE
INSTRUCTIONS.

\

410

THE TEMPLATE ENGINE INSERTS THE PROCESSED METADATA
OF THE ELEMENT AT THE INDICATED LOCATION IN THE
OUTPUT FILE.

U.S. Patent Mar. 1, 2016 Sheet 1 of 9 US 9,274,755 B2

100

~

105

A JAVA PROJECT IS CREATED IN AN INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE) TO ENABLE
ANNOTATION PROCESSING IN RESPONSE TO A REQUEST OF A
SOFTWARE DEVELOPER.

l 110

REPEATING PATTERNS ARE IDENTIFIED IN A PROJECT CODE
BASE BASED ON DEVELOPER INPUT.

115

ANNOTATIONS THAT IDENTIFY THE REPEATING PATTERNS IN
MODIFIED SOURCE CODE FILES ARE INSERTED BASED ON
DEVELOPER INPUT.

120

A GENERATOR IS CREATED BASED ON DEVELOPER INPUT.

THE GENERATOR IS PROVIDED TO AN ANNOTATION ENGINE
TO AUTOMATICALLY IDENTIFY THE REPEATING PATTERNS
VIA THE ANNOTATIONS AND A TEMPLATE GENERATOR THAT
PRODUCES CORRESPONDING FILES.

FIGURE 1
END

U.S. Patent Mar. 1, 2016 Sheet 2 of 9

COMPUTING ENVIRONMENT 200

INTEGRATED
DEVELOPMENT
ENVIRONMENT (IDE) 240

Code

Generation INITIAL SOURCE

Module 255 CODE FILES 245
JAVA

Compiler 265 REPOSITORY 270

FINAL SOURCE
CODE FILES 275

JAVA VIRTUAL MACHINE

250 EXECUTABLE
280

HOST OPERATING SYSTEM 235

HARDWARE PLATFORM
215
HARDWARE
CPUs MEMORY DEVICE
220 225 230
Figure 2 /5

200

US 9,274,755 B2

User Interface
(host machine) 210

USER 205

US 9,274,755 B2

{

l— User Interface

(host machine) 210

USER 205

JAVA VIRTUAL MACHINE
250

U.S. Patent Mar. 1, 2016 Sheet 3 of 9
Code Generation Module INTEGRATED
255 DEVELOPMENT
ENVIRONMENT (IDE) 240
ANNOTATION <
ENGINE 320 INITIAL SOURCE
P CODE FILES 245
v v
< INITIAL SOURCE
TEMPLATE CODE FILES WITH
ENGINE 325 ANNOTATIONS 305
TEMPLATE MODULE
L 310
Java Code with < .
Boilerplate 330
GENERATOR
MODULE 315
Y
JAVA REPOSITORY 270
Compiler 265
FINAL SOURCE
CODE FILES 275
EXECUTABLE
JAVA 280
Bytecode
with
Boilerplate
335 %
Figure 3 /f

300

U.S. Patent Mar. 1, 2016 Sheet 4 of 9 US 9,274,755 B2

400

~

402

AN ANNOTATION ENGINE OF A CODE GENERATION MODULE
SCANS ONE OR MORE INITIAL SOURCE CODE FILES FOR AN
ANNOTATION IDENTIFYING METADATA OF AN ELEMENT.

404

THE ANNOTATION PROCESSOR SCANS A GENERATOR FOR
INSTRUCTIONS FOR PROCESSING THE METADATA OF THE
ELEMENT.

406

A TEMPLATE ENGINE OF THE CODE GENERATION MODULE
SCANS THE GENERATOR FOR A TEMPLATE MODULE THAT
INCLUDES AN INDICATION OF A LOCATION FOR INSERTING
THE PROCESSED METADATA OF THE ELEMENT IN AN OUTPUT
FILE.

408

THE TEMPLATE ENGINE PROCESSES THE METADATA OF THE
ELEMENT OF THE GENERATOR ACCORDING TO THE
INSTRUCTIONS.

410

THE TEMPLATE ENGINE INSERTS THE PROCESSED METADATA
OF THE ELEMENT AT THE INDICATED LOCATION IN THE
OUTPUT FILE.

FIGURE 4
END

U.S. Patent Mar. 1, 2016 Sheet 5 of 9 US 9,274,755 B2

305 \
502
@Entity 504
public class Customer { ... } -
@Entity - 204

public class Order { ... }

FIGURE 5

U.S. Patent Mar. 1, 2016 Sheet 6 of 9 US 9,274,755 B2

255

S

602
@Generator -

public interface EntityXmiGenerator {
/ @Produces(«—— 506
604 output = “my-business-entities.xml”, // Output file -—
template = “my-template.fml”) // Template file ¢ 310
@ForAllElements(@Where(

kind = CLASS, // Matching all classes... 610
614 annotations = “Entity”, // ...marked with annotation =~ <

matchResultVariable = “entities” // ...and provide themto <—— 612
// the template as variable

335

608 void methodNamelsNotSignificant();

FIGURE 6

U.S. Patent Mar. 1, 2016 Sheet 7 of 9 US 9,274,755 B2

310

N

702
<business-entities>
<{f-- lterate over “entities” variable -->
704 <#listentities as e>

706 ——» <entity>
<#-- Call Java method on matched entity (getQualifiedName) -->

${e.qualifiedName}
708 > </entity>

</#ist>
</business-entities>

FIGURE 7

U.S. Patent Mar. 1, 2016 Sheet 8 of 9 US 9,274,755 B2

330

<business-entities>
<entity>

Customer

</entity>

<entity>

Order

</entity>
</business-entities>

FIGURE 8

U.S. Patent Mar. 1, 2016 Sheet 9 of 9 US 9,274,755 B2

NG
e
<

O

902 PROCESSING DEVICE 910
I | VIDEO -
922 CODE GENERATION N ™ DISPLAY
MODULE
904 MAIN MEMORY 912
ALPHA-NUMERIC
922 CODE GENERATION B ™ INPUT DEVICE
MODULE
906 T 914
STATIC CURSOR CONTROL
<——Pp| | —P]
MEMORY DEVICE
)
-
[a8]
908 —. NETWORK SIGNAL GENERATION 916
INTERFACE DEVICE DEVICE
DATA STORAGE DEVICE 918
MACHINE-READABLE 920
STORAGE MEDIUM
Bl -
I CODE GENERATION 922
MODULE

Figure 9

US 9,274,755 B2

1
INFRASTRUCTURE FOR GENERATING
CODE USING ANNOTATION AND TEMPLATE
GENERATORS

TECHNICAL FIELD

Embodiments of the present invention relate to computer
programming tools, and more specifically, to a method and
system for generating boilerplate code.

BACKGROUND

During a system requirements or software architectural
design phases of a computer software project, common ele-
ments or modules may be identified and assigned to indi-
vidual software developers. Anticipating commonalities at a
high level and early in development renders a project more
modular and easier to maintain. This reduces human error and
other related costs and increases the reliability of the resulting
code.

However, not all commonalities are easy to discern before
coding begins. As each project grows and gains complexity
over time, its source code or other files may reveal patterns
that repeat throughout the project code base. Source code,
whether it is C++, Java, Perl, HTML or XML files, may
include portions that repeat in many places with little or no
alteration.

These repetitive portions of code can be technology or
domain oriented, well-known or emerging, affecting code or
other project artifacts. In most cases, maintaining such files
by hand makes little sense, since human error may result in
lost reliability of the resulting code.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, and will become apparent upon
consideration of the following detailed description, taken in
conjunction with the accompanying drawings, in which like
reference characters refer to like parts throughout, and in
which:

FIG. 1 depicts one embodiment of a process to identify and
generate boilerplate code using an annotation engine and a
template engine that operates on source code that comprises
annotations.

FIG. 2 illustrates one embodiment of a computing environ-
ment for generating boilerplate code in which embodiments
of the present invention may be implemented.

FIG. 3 is a block diagram illustrating one embodiment of
generating initial source code files that include annotations
for generating boilerplate code.

FIG. 4 is a flow diagram illustrating one embodiment of a
method for generating boilerplate code.

FIG. 5 depicts one embodiment of a Java source code file
with annotations that identify metadata of an element.

FIG. 6 depicts one embodiment of a generator module that
is to be scanned by the annotation engine for instructions for
processing the metadata of the element.

FIG. 7 depicts one embodiment of a template module that
includes an indication of a location for inserting the processed
metadata of the element in an output file.

FIG. 8 depicts an exemplary XML output file processed
according to instructions of the annotation generator operat-
ing on a generator module working in conjunction with the
template generator operating on a template file.

FIG. 9 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system within

10

15

20

25

30

35

40

45

50

55

60

65

2

which a set of instructions, for causing the machine to per-
form any one or more of the methodologies discussed herein,
may be executed.

DETAILED DESCRIPTION

A method and system for generating boilerplate code are
described herein. In one embodiment, an annotation engine
on a processing device scans a module for an annotation
identifying metadata of an element. The annotation engine
scans a generator module for instructions for processing the
metadata of the element. A template engine on the processing
device scans the generator module for a template module that
includes an indication of alocation for inserting the processed
metadata of the element in an output file. The template engine
processes the metadata of the element of the generator mod-
ule according to the instructions. The template engine inserts
the processed metadata of the element at the indicated loca-
tion in the output file.

In one embodiment, the annotation engine may be a Java
annotation tool that supports Java annotation processing
(JSR-269) specification (i.e., the Java compiler). The tem-
plate engine may be the open source FreeMarker template
engine.

In one embodiment, the metadata of the element comprises
information about the class of the element. In one embodi-
ment, instructions for processing metadata of the element in
the generator module may comprise instructions for matching
atleast one variable corresponding to the element. The at least
one variable to match in the generator module may be a Java
source code element. The Java source code element may be
one of a class, a class method, an interface, a variable, a
parameter, or a package. The at least one variable to match in
the generator module may be accepted as at least one variable
in the template module.

In one embodiment, the instructions for processing the
metadata of the element in the generator module may further
comprise instructions for processing the template module. In
one embodiment, instructions for processing the metadata of
the element in the generator module may comprise instruc-
tions for matching each of the at least one variable meeting a
criterion. In another embodiment, instructions for processing
the metadata of the element in the generator module may
comprise instructions for a construct for matching all of the at
least one variable meeting a criterion.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown in block diagram form, rather than in detail, in
order to avoid obscuring the present invention.

Some portions of the detailed description which follows
are presented in terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
result. The steps are those requiring physical manipulations
of physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

US 9,274,755 B2

3

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “identifying”, “receiving,” “monitoring,” “causing”, or the
like, refer to the actions and processes of a computer system,
or similar electronic computing device, that manipulates and
transforms data represented as physical (e.g., electronic)
quantities within the computer system’s registers and memo-
ries into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be con-
structed for the specific purposes, or it may comprise a gen-
eral purpose computer selectively activated or reconfigured
by a computer program stored in the computer. Such a com-
puter program may be stored in a machine readable storage
medium, such as, but not limited to, any type of disk including
floppy disks, optical disks, CD-ROMs, and magnetic-optical
disks, read-only memories (ROMs), random access memo-
ries (RAMs), EPROMs, EEPROMs, magnetic or optical
cards, or any type of media suitable for storing electronic
instructions, each coupled to a computer system bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct an apparatus to perform the method
steps. The structure for a variety of these systems will appear
as set forth in the description below. In addition, the present
invention is not described with reference to any particular
programming language. [t will be appreciated that a variety of
programming languages may be used to implement the teach-
ings of the invention as described herein.

The present invention may be provided as a computer
program product, or software, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other elec-
tronic devices) to perform a process according to the present
invention. A machine-readable medium includes any mecha-
nism for storing or transmitting information in a form read-
ableby amachine (e.g., a computer). For example, a machine-
readable (e.g., computer-readable) medium includes a
machine (e.g., a computer) readable storage medium (e.g.,
read only memory (“ROM”), random access memory
(“RAM”), magnetic disk storage media, optical storage
media, flash memory devices, etc.), etc.

Embodiments of the present invention provide a method
and system for generating boilerplate code. FIG. 1 depicts
one embodiment of a process 100 to identify and generate
boilerplate code using an annotation engine and a template
engine that operates on source code that comprises annota-
tions. In one embodiment, the process 100 combines the open
source FreeMarker template engine with Java annotation pro-
cessing capability. Alternatively, any other software tools that
support template generation based on a computer language
that includes user-defined annotations may be employed.

At block 105, a Java project is created in an integrated
development environment (IDE) to enable annotation pro-
cessing in response to a request of a software developer. At
block 110, repeating patterns are identified in a project code
base based on developer input. At block 115, annotations that
identify the repeating patterns in modified source code files

10

15

20

25

30

35

40

45

50

55

60

65

4

are inserted based on developer input. At block 120, a gen-
erator module (“generator”) is created based on developer
input. At block 125, the generator is provided to an annotation
engine (e.g., a Java annotation processing tool) to automati-
cally identify the repeating patterns via the annotations and a
template generator (e.g., FreeMarker) that produces corre-
sponding files (e.g., any files—source code, configuration,
etc.).

Output files may be generated based on the given template.
Each template can expose variables as defined by the genera-
tor. For example, all Java classes that carry certain annota-
tions may be matched, and the matched information may be
exposed to the template generator as a list variable.

FIG. 2 illustrates one embodiment of a computing environ-
ment 200 for generating boilerplate code in which embodi-
ments of the present invention may be implemented. The
computing environment 200 may be implemented on a hard-
ware platform 215 as a server, client, workstation, desktop,
tablet, or any other machine. It can also be implemented in
one or more small portable platforms such as a notebook, a
PDA (personal digital assistant), or wireless web devices, and
other devices. The hardware platform 215 may include one or
more central processing units (CPUs) 220. The hardware
platform 215 may also include additional hardware devices
230, such as network interface cards (NICs), sound or video
adaptors, photo/video cameras, printer devices, keyboards,
displays or any other suitable device intended to be coupled to
a computer system. The hardware platform 215 may also
include a memory 225. In one embodiment, the memory 225
comprises one or more hardware and software devices, which
may be located internally and externally to the computing
environment 200. Examples of memory 225 may include, but
are not limited to, random-access memory (RAM), non-vola-
tile storage memory (e.g., Flash, EEPROM, solid state drives
(SSD), etc.), magnetic storage memory (e.g., one or more
hard drives), and optical memory (e.g., CDs, DVD, BlueRay
drives, etc.).

The hardware platform may host an operating system 235,
such Microsoft Windows®, Linux®, Solaris®, Mac® OS,
etc., that provides services between the underlying hardware
platform 215 and a user interface 210, an integrated develop-
ment environment (IDE) 240, a Java virtual machine 250, and
a repository 270.

FIG. 3 is a block diagram illustrating one embodiment of
generating initial source code files 245 that include annota-
tions for generating boilerplate code. A user 205 (e.g., a
software developer) working with the IDE 240 creates a plu-
rality of initial source code files 245 through an editor (not
shown) displayed in the user interface 210. The initial source
code files 245 define tasks in the form of logic to be performed
and data defining a plurality of identifiers for each task in the
form of classes, class methods, interfaces, variables, param-
eters, and packages. The IDE 240 includes programming
tools for programming in Java, C++, Perl, Python, etc. The
initial source code files 245 may include one or more anno-
tations (e.g., Java annotations) that indicate that subsequent
code is to be automatically generated multiple times as boil-
erplate code.

In the embodiment shown in FIGS. 2 and 3, the initial
source code files with annotations 305 may be programmed,
for example, in Java and fed to a Java virtual machine 250.
The Java virtual machine 250 may include a code generation
module 255 comprising an annotation engine 320, a template
engine 325, and a Java compiler 265. Annotation in Java
source code is a special form of syntactic metadata that can be
added to Java source code. Java classes, methods, variables,
parameters and packages may be annotated. When compiled,

US 9,274,755 B2

5

the Java compiler 265 conditionally stores annotation meta-
data in class files if the annotation has a retention policy of
CLASS or RUNTIME, At runtime, the Java virtual machine
(NM) 250 can look for the annotation metadata to determine
how to interact with various program elements or to change
their behavior.

The annotation engine 320 of the code generation module
255 may be configured to scan the source code files with
annotations 305 for an annotation identifying metadata of one
or more elements whose source code is to be generated. The
annotation engine 320 may be configured to scan a generator
module 315 programmed by the user 205 in the IDE 240 for
instructions for processing the metadata of the element. The
template engine 325 of the code generation module 255 may
be configured to scan the generator module 315 for a template
module 310 that includes an indication of alocation for insert-
ing the processed metadata of the element in an output file.
The template engine 325 may be configured to process the
metadata of the element of the generator module 315 accord-
ing to the instructions. The template engine 325 may be
configured to insert the processed metadata of the element at
the indicated location in the output file to produce code (e.g.
Java code) with boilerplate code 330.

The Java compiler 265 converts the Java source code with
boilerplate code 330 into operable information in the form of
Java bytecode with boilerplate code 335. The operable infor-
mation may be an executable file 280. The Java virtual
machine 250 may be coupled to a repository 270 for storing
the logic (e.g., the Java code with boilerplate code 330) and
the operable information (e.g., the Java bytecode with boil-
erplate code 335 stored as an executable file 280). The reposi-
tory 270 may be implemented in the memory 225 or trans-
mitted to a remote memory (not shown) over a network (not
shown) via the hardware device(s) 230 by the one or more
CPUs 220.

FIG. 4 is a flow diagram illustrating one embodiment of a
method 400 for generating boilerplate code. Method 400 may
be performed by processing logic (e.g., in computer system
900 of FIG. 9) that may comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), soft-
ware (such as instructions run on a processing device), firm-
ware, or a combination thereof. In one embodiment, method
400 is performed primarily by the code generation module
255 residing within the Java virtual machine 250 and running
on the operating system 235 of the computing environment
200 of FIGS. 2 and 3.

Referring to FIG. 4, in one embodiment, method 400
begins when, at block 402, the annotation engine 320 of the
code generation module 255 scans one or more initial source
code files with annotations 245 for an annotation identifying
metadata of an element (e.g., one or more software compo-
nents or set of components whose code is to be generated as
boilerplate code). In one embodiment, the annotation engine
320 is a Java annotation processing tool.

FIG. 5 depicts one embodiment of a Java source code file
with annotations 305 that identifies metadata of an element.
Suppose the boilerplate code to be generated is to be included
in an XML file that lists all Java “entities”. The element(s) 504
may be, for example, class definitions (e.g., “Customer” and
“Order”). These element(s) 504 are preceded by a Java anno-
tation 502 (e.g., “@Entity” as indicated with the “@” symbol)
that indicates to the generator module 255 discussed below
that boilerplate code is to be generated for an object specified
by the element(s) 504. The actual classes “Customer” and
“Order” are not directly passed to the generator module 255,
but the “@Entity” annotation is used to pass metadata infor-
mation about these classes, such as what fields, methods,

10

15

20

25

30

35

40

45

50

55

60

65

6

types, etc., the aforementioned classes contain. Effectively, a
method is invoked on provided class metadata within the
template module 310.

At block 404, the annotation engine 320 scans the genera-
tor module 255 for instructions for processing the metadata of
the element. In one embodiment, the generator module 255 is
defined or implemented as a Java interface. The metadata of
the element comprises information about the class of the
element. In one embodiment, instructions for processing
metadata of the element in the generator module 255 may
comprise instructions for matching at least one variable cor-
responding to the element. The at least one variable to match
in the generator module 255 may be a Java source code
element. The Java source code element may be one of a class,
a class method, an interface, a variable, a parameter, or a
package. The at least one variable to match in the generator
module 255 may be accepted as at least one variable in the
template module 310.

The instructions for processing the metadata of the element
in the generator module 255 may further comprise instruc-
tions for processing the template module 310. In one embodi-
ment, instructions for processing the metadata of the element
in the generator module 255 may comprise instructions for
matching each ofthe at least one variable meeting a criterion.
In another embodiment, instructions for processing the meta-
data of the element in the generator module 255 may com-
prise instructions for a construct for matching all of the at
least one variable meeting a criterion.

FIG. 6 depicts one embodiment of a generator module 255
that is to be scanned by the annotation engine 320 for instruc-
tions for processing the metadata of the element(s). The
instructions may be encoded, for example, as a Java interface
604 that is indicated as the generator module 255 by a gen-
erator annotation 604 (e.g., “@Generator”). The instructions
for processing the metadata of the element(s) 504 are encoded
in the code following the one or more annotations 614 (e.g.,
“@ForAllElements (@Where(. . .))”). In the example, the
annotations 614 provide instructions for matching all ele-
ments 612 (e.g., in the variable “matchResultVariable”) of
type 608 (e.g., kind=CLASS (i.e., all classes)) that are
marked with the annotation(s) 610 (e.g., “entities” corre-
sponding to “@Entity”). The matched elements 612 are to be
provided to the template module 310 as a variable(s) to be
processed by the template engine 325.

At block 406, the template engine 325 of the code genera-
tion module 255 scans the generator module 255 for the
template module 310 that includes an indication of a location
for inserting the processed metadata of the element in an
output file (e.g., the Java code with boilerplate code 330). The
text in the template module 310 (and the output file) may
comprise at least one of source code, HTML, XML, or con-
figuration data. The source code may be one of a class, a class
method, an interface, a variable, a parameter, or a package.
The template engine 325 may access a name of a field or
method of the at least one variable in the template module
310. The template engine 325 may then iterate over the name
of'the at least one variable or the field or method of the at least
one variable in the template module 310.

At block 408, the template engine 325 processes the meta-
data of the element of the generator module 255 according to
the instructions. At block 410, the template engine 325 inserts
the processed metadata of the element at the indicated loca-
tion in the template module 310 in the output file (e.g., the
Java code with boilerplate code 330).

FIG. 7 depicts one embodiment of a template module 310
that includes an indication of a location for inserting the
processed metadata of the element in the output file 330. The

US 9,274,755 B2

7

output file 330 (e.g., “my-business-entities.xml”) is stored in
avariable (e.g., “output”). In the example, the template mod-
ule comprises fixed data 702 (e.g., “<business-entities>" and
“<entity>") followed by non-fixed data as indicated by an
iteration 706 over a variable (e.g., “e”) which is stored in FIG.
6 as “getQualifiedName”. A Java method of “e” is invoked to
output the “entities” in the output file (e.g., the Java code with
boilerplate code 330 (e.g., “my-business-entities.xml”))
shown in FIG. 8.

FIG. 9 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 900
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a local area network (LAN), an intranet, an
extranet, or the Internet. The machine may operate in the
capacity of a server or a client machine in a client-server
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine may be a
personal computer (PC), a tablet PC, a set-top box (STB), a
personal digital assistant (PDA), a cellular telephone, a web
appliance, a server, a network router, switch or bridge, or any
machine capable of executing a set of instructions (sequential
or otherwise) that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or multiple
sets) of instructions to perform any one or more of the meth-
odologies discussed herein.

The exemplary computer system 900 includes a processing
device 902, a main memory 904 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) (such as synchronous DRAM (SDRAM) or Ram-
bus DRAM (RDRAM), etc.), a static memory 906 (e.g., flash
memory, static random access memory (SRAM), etc.), and a
data storage device 918, which communicate with each other
via a bus 930.

Processing device 902 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 902 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. Processing device 902 is configured to execute the
code generation module 255 for performing the operations
and steps discussed herein.

Computer system 900 may further include a network inter-
face device 908. Computer system 900 also may include a
video display unit 910 (e.g., a liquid crystal display (LCD) or
a cathode ray tube (CRT)), an alphanumeric input device 912
(e.g., akeyboard), a cursor control device 714 (e.g., a mouse),
and a signal generation device 916 (e.g., a speaker).

Data storage device 918 may include a machine-readable
storage medium (or more specifically a computer-readable
storage medium) 920 having one or more sets of instructions
(e.g., the code generation module 255) embodying any one or
more of the methodologies of functions described herein. The
1D handler module 355 may also reside, completely or at least
partially, within main memory 904 and/or within processing
device 902 during execution thereof by computer system 900;

10

15

20

25

30

35

40

45

50

55

60

65

8

main memory 904 and processing device 902 also constitut-
ing machine-readable storage media. The code generation
module 255 may further be transmitted or received over a
network 926 via network interface device 708.

Machine-readable storage medium 920 may also be used to
store the device queue manager logic persistently. While
machine-readable storage medium 920 is shown in an exem-
plary embodiment to be a single medium, the term “machine-
readable storage medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets of instructions. The term “machine-readable
storage medium” shall also be taken to include any medium
that is capable of storing or encoding a set of instruction for
execution by the machine and that causes the machine to
perform any one or more of the methodologies of the present
invention. The term “machine-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, and optical and magnetic media.

The components and other features described herein can be
implemented as discrete hardware components or integrated
in the functionality of hardware components such as ASICs,
FPGAs, DSPs or similar devices. In addition, these compo-
nents can be implemented as firmware or functional circuitry
within hardware devices. Further, these components can be
implemented in any combination of hardware devices and
software components.

Some portions of the detailed descriptions are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-
consistent sequence of steps leading to a desired result. The
steps are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities
take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared, and other-
wise manipulated. It has proven convenient at times, princi-
pally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers,
or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such

as “enabling”, “transmitting”, “requesting”, “identifying”,
“querying”, “retrieving”, ‘“forwarding”, “determining”,
“passing”, “processing”, “disabling”, or the like, refer to the

action and processes of a computer system, or similar elec-
tronic computing device, that manipulates and transforms
data represented as physical (electronic) quantities within the
computer system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such information
storage, transmission or display devices.

Embodiments of the present invention also relate to an
apparatus for performing the operations herein. This appara-
tus may be specially constructed for the required purposes or
it may comprise a general purpose computer selectively acti-
vated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored in a com-
puter readable storage medium, such as, but not limited to,
any type of disk including floppy disks, optical disks, CD-

US 9,274,755 B2

9

ROMs and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic or optical cards, flash memory devices
including universal serial bus (USB) storage devices (e.g.,
USB key devices) or any type of media suitable for storing
electronic instructions, each of which may be coupled to a
computer system bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein or it may prove con-
venient to construct more specialized apparatus to perform
the required method steps. The required structure for a variety
of'these systems will be apparent from the description above.
In addition, the present invention is not described with refer-
ence to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.

It is to be understood that the above description is intended
to be illustrative, and not restrictive. Many other embodi-
ments will be apparent to those of skill in the art upon reading
and understanding the above description. Although the
present invention has been described with reference to spe-
cific exemplary embodiments, it will be recognized that the
invention is not limited to the embodiments described, but can
be practiced with modification and alteration within the spirit
and scope of the appended claims. Accordingly, the specifi-
cation and drawings are to be regarded in an illustrative sense
rather than a restrictive sense. The scope of the invention
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

What is claimed is:

1. A method comprising:

scanning, by a processing device, a source code file to

identify a repeating pattern via one or more annotation
identifying metadata of an element;

scanning a generator module for instructions to process the

metadata of the element, wherein the instructions are
encoded with one or more annotations and comprise a
matching criterion and instructions to process a tem-
plate; wherein the matching criterion comprises instruc-
tions to match the element to a source code element
associated with a compiler;

scanning the generator module for the template module

that comprises an indication of one or more location to
insert the processed metadata of the element in an output
file;

processing the metadata of the element of the generator

module according to the instructions;

storing the metadata in view of a retention policy; and

inserting the processed metadata of the element at the

indicated location in the output file.

2. The method of claim 1, wherein instructions to process
metadata of the element in the generator module comprise
instructions to match at least one variable corresponding to
the element.

3. The method of claim 2, wherein the at least one variable
to match in the generator module is a Java™ source code
element.

4. The method of claim 3, wherein the Java™ source code
element is one of a class, a class method, an interface, a
variable, a parameter, or a package.

5. The method of claim 3, wherein the at least one variable
to match in the generator module is accepted as at least one
variable in the template module.

10

15

20

25

30

35

40

45

50

55

60

65

10

6. The method of claim 5, further comprising accessing a
field or a method of the at least one variable in the template
module.

7. The method of claim 6, further comprising, iterating over
at least one variable or the field or the method of the at least
one variable in the template module.

8. The method of claim 1, wherein the generator module is
a Java™ interface.

9. The method of claim 1, wherein instructions to process
the metadata of the element in the generator module comprise
instructions to process the template module.

10. The method of claim 1, wherein instructions to process
the metadata of the element in the generator module comprise
instructions to match each of the at least one variable meeting
a criterion.

11. The method of claim 1, wherein instructions to process
the metadata of the element in the generator module comprise
instructions for a construct to match all of the at least one
variable meeting a criterion.

12. The method of claim 1, wherein the text in the output
file comprises at least one of source code, HTML, XML, or
configuration data.

13. The method of claim 12, wherein the source code is one
ofaclass, aclass method, an interface, a variable, a parameter,
or a package.

14. The method of claim 1, wherein the metadata of the
element comprises information about a class of the element.

15. A computer system, comprising:

a memory; and

a processing device, operatively coupled to the memory,

the processing device to:

scan a source code file to identify a repeating pattern via
one or more annotation identifying metadata of an
element;

scan to identify instructions to process the metadata of
the element, wherein the instructions are encoded
with one or more annotations and comprise a match-
ing instructions to match the element to a source code
element associated with a compiler;

scan to identify the template module that comprises an
indication of one or more locations to insert the pro-
cessed metadata of the element in an output file;

process the metadata of the element according to the
instructions;

store the metadata in view of a retention policy; and

insert, by the template engine, the processed metadata of
the element at the indicated location in the output file.

16. The system of claim 15, wherein the instructions to
process metadata of the element comprise instructions to
match at least one variable corresponding to the element.

17. The system of claim 15, further comprising a Java™
interface.

18. A non-transitory computer-readable storage medium
comprising instructions that cause a processing device to:

scan a source code file to identify a repeating pattern via

one or more annotation identifying metadata of an ele-
ment;

scan a generator module for instructions to process the

metadata of the element, wherein the instructions are
encoded with one or more annotations and comprise a
matching criterion and instructions to process a tem-
plate; wherein the matching criterion comprises instruc-
tions to match the element to a source code element
associated with a compiler;

US 9,274,755 B2

11

scan the generator module for the template module that
comprises an indication of one or more locations to
insert the processed metadata of the element in an output
file;

process, by the processing device, the metadata of the

element of the generator module according to the
instructions;

store the metadata in view of a retention policy; and

insert the processed metadata of the element at the indi-

cated location in the output file.

19. The non-transitory computer-readable storage medium
of claim 18, wherein the instructions for processed metadata
of'the element in the generator module comprise instructions
to match at least one variable corresponding to the element.

20. The non-transitory computer-readable storage medium
of claim 18, wherein the generator module is a Java™ inter-
face.

5

10

15

12

